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Abstract

The e�ciency of two-material ®ns is presented. The analytical solution is compared to the expression obtained by

Gardner for one-material ®ns. We conclude that Gardner's expression can be used for a two-material ®n, by
changing only the value of one parameter. The e�ciency of a galvanized ®n may be considerably increased by the
coating. The ratio of the e�ciency of the coated ®n to the e�ciency of the basic ®n may increase by a factor of two
for thin ®ns having a large ®n tip radius to base radius ratio. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well known that the use of extended surfaces

increases the heat transfer between a base surfaces and
a ¯uid [1]. The e�ciency of di�erent shapes of ®ns has
already been established [2,3]. But the proposed

equations do not allow a computation of the tempera-
ture distribution and of the e�ciency of ®ns made of
two materials. These kind of ®ns are encountered in
galvanized steel heat exchangers. In this paper, we

develop an expression for the temperature distribution
and e�ciency of such ®ns, taking into account the
e�ect of the thickness of the ®n.

Fig. 1 gives a schematic view of such a ®n.

2. Theoretical development

The study of the temperature distribution is based
upon the following common assumptions:

1. the heat transfer rate is steady;
2. the ®n materials are homogeneous and isotropic;

3. the thermal conductivities, l, of the ®n are constant;
4. there are no heat sources in the ®n;
5. the heat transfer can be calculated with Newton's

law;
6. the heat transfer coe�cient, h, is the same all over

the ®n surface;
7. the temperature, Tf , of the surrounding ¯uid is uni-

form;
8. the heat transferred through the ®n tip is negligible;
9. the temperature at the root of the ®n is known;

10. the contact resistance is negligible.

To simplify the presentation of the equations govern-

ing the studied phenomena, it is necessary to introduce
the temperature di�erences yi=Ti(r, z )ÿTf . It is also
possible to write the temperature distribution in one

half of the ®n (for zr0).
The heat propagation in the central material of the

®n may be written as Eq. (1):
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The heat propagation in the outer material of the ®n
may be written as Eq. (2):
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At the interface of the two materials, the temperature
in the central material is equal to the temperature in

the outer material [Eq. (3)].
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Likewise, the heat ¯uxes are equal at the interface of

the two materials [Eq. (4)].
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At the ®n surface, the heat ¯ux by convection equals
the heat ¯ux by conduction, which may be written as
Eq. (5):

Nomenclature

A integration variable
a integration variable
b integration variable

B integration variable
c thickness
h convection coe�cient

In modi®ed Bessel function of the ®rst kind and of order n
Kn modi®ed Bessel function of the second kind and of order n
q heat ¯ux

r radius
R function of r
T temperature
z abscissa

Z function of z.

Greek symbols
d temperature distribution parameter for a one-material ®n

d2 temperature distribution parameter for a two-material ®n
Z ®n e�ciency
y temperature di�erence
l conductivity.

Subscripts
b base of the ®n
e extremity of the ®n

f ¯uid
i index of the material.

Fig. 1. Schematic view of a coated ®n.
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We suppose now that each temperature di�erence is

the product of a function of r and a function of z,
Eqs. (6) and (7):

y1 � R1�r� � Z1�z� �6�

y2 � R2�r� � Z2�z�: �7�

Eq. (3) may be written as Eq. (8):
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The separation of the variables technique increases the
numbers of unknowns without increasing the number

of boundary conditions. So, we have to arbitrarily
choose new boundary conditions. Here, we can impose
Z1(c1/2)=Z2(c1/2). In this case Eq. (3) gives Eq. (9):

R1�r� � R2�r�: �9�

Thus, only one unknown has to be considered:
R(r )=R1(r )=R2(r ).

To ®nd the equation which will allow us to calculate
R(r ), an energy balance is written in the ®n at radius
r. The conduction heat ¯ux crossing a section at this

arbitrary distance r may be written as the sum of the
heat ¯ux in the inner material and in the outer ma-
terial [Eq. (10)]:
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This heat ¯ux only comes from energy convected into

the ®n between radius r and the outer radius of the ®n.
This may be written as Eq. (11):
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Combining Eqs. (10) and (11), introducing Eq. (9),
taking the derivative of the combined equation, and re-
arranging the results, we obtain Eq. (12):
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This shows that R is a combination of the Bessel func-
tions. We write the solution as Eq. (13):

R�r� � A � I0�d2 � r� � B � K0�d2 � r� �13�

with:
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Note that Eq. (13) also represents the temperature dis-

tribution in one-material ®ns; the only di�erence is
that the parameter used by Gardner � �������������������

2 � h=l � cp � has
to be replaced by d2.
As the e�ciency of a ®n is de®ned as the ratio of

the actual convection ¯ux to the convection ¯ux the ®n
would have transmitted if the outer surface were at the

temperature of the foot of the ®n, we may write the
e�ciency as Eq. (15):
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The e�ciency depends only on the R function. Hence,
it depends only on the parameter d2 or

�������������������
2 � h=l � cp

.
This shows that it is possible to calculate the ®n e�-
ciency for two-material ®ns using the curves that have

been established by Gardner for one-material ®ns,
replacing the parameter d by d2. We now need to
develop an expression for d2.
Introducing the R and Z functions in Eqs. (1) and

(2), we ®nd:

d2Z1�z�
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A substitution from Eq. (12) can be made for the two

bracketed terms. Then, substitutions in Eqs. (16) and
(17) result in Eqs. (18) and (19):

d2Z1�z�
dz2

� d22 � Z1�z� � 0 �18�

d2Z2�z�
dz2

� d22 � Z2�z� � 0: �19�

It is possible to write general expressions for Z1(z ) and

Z2(z ):

Z1�z� � a1 � cos�d2 � z� � b1 � sin�d2 � z�

Z2�z� � a2 � cos�d2 � z� � b2 � sin�d2 � z�:

The symmetry condition on the symmetry plane of the

®n gives b1=0. These expressions, combined with Eq.
(9), can be used to rewrite Eqs. (3)±(5). From these
equations we can deduce:

Fig. 3. In¯uence of the radius ratio on the e�ciency ratio.

Fig. 2. In¯uence of the convection coe�cient on the e�ciency ratio.
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Eq. (22) gives an implicit equation in d2, but the value of d2 may be approximated, for thin ®ns with a thin coating,

by noting cos(j )4 1 and sin(j )4j, and c1 � (c2ÿc1)4 0. We obtain Eq. (23):

d2 �
��������������������������������������������

2 � h
l2 � �c2 ÿ c1� � l1 � c1

s
: �23�

We can note that when l1=l2, c1=0, or c2=c1 (one-material ®n), we ®nd that Eq. (23) reduces to the traditional ex-
pression of d:

d �
����������
2 � h
l � c

r
: �24�

The separation of the variables technique has led us to write four second-order di�erential equations. Hence, we
have to determine eight unknowns. We have already transcribed four boundary conditions. The last boundary con-
ditions we know are: the heat transferred through the outermost edge of the ®n is negligible, and the temperature at

the base of the ®n is imposed; these boundary conditions are used to determine A and B. This makes only six
boundary conditions. So, it is possible to arbitrarily choose two more boundary conditions. We have already written
Z1(c1/2)=Z2(c1/2). The last boundary condition we choose is:
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Then we are able to give the expression of the R function:

R�r� � y
�
Rb,

c2
2

�
� K1�d2 � Re� � I0�d2 � r� � I1�d2 � Re� � K0�d2 � r�
K1�d2 � Re� � I0�d2 � Rb� � I1�d2 � Re� � K0�d2 � Rb� : �26�

We can ®nally give the expression of the e�ciency of the ®n:

Z � 2 � Rb

d2 � �R2
e ÿ R2

b�
� I1�d2 � Re� � K1�d2 � Rb� ÿ K1�d2 � Re� � I1�d2 � Rb�
I1�d2 � Re� � K0�d2 � Rb� � K1�d2 � Re� � I0�d2 � Rb� : �27�

3. Application

Consider ®ns made of steel and coated by zinc. For the steel suppose [1] l1=50 W mÿ1 Kÿ1 and for the zinc

l2=111 W mÿ1 Kÿ1. Coating thicknesses range from 50 to 150 mm. Fins typically have a thickness between 0.2 and
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1 mm. The diameter of the tubes that support the ®ns
generally ranges from 10 to 50 mm, and the outer di-
ameter of the ®n generally ranges from 1.5 to 3 times
the tube diameter. The convection coe�cient varies

from 25 to 150 W mÿ2 Kÿ1.
Figs. 2±5 compare the e�ciency of coated ®ns to the

e�ciency of uncoated ®ns for various geometrical

characteristics, convection coe�cients, and coating
thicknesses.
As can be seen, the thicker the coating, the more

e�cient the ®n. When the convection coe�cient
increases (Fig. 2), when the radius ratio increases (Fig.
3), or when the ®n base radius increases (Fig. 4), the

temperature gradient in the ®n increases. Likewise, the
more uniform the temperature, the higher the e�ciency
of the ®n. So, the role of the coating is clear: it
increases the apparent conductivity of the ®n, reducing

the temperature gradient and increasing the ®n e�-
ciency. With a thicker core ®n, the e�ect of the zinc on
the apparent conductivity is reduced. Hence, the

thicker the basic ®n, the lower is the gain in the ®n e�-
ciency (Fig. 5).
We have to note that, for all these examples, the

di�erence between the solution of the implicit Eq. (22),
which is obtained using Mathematica, and the simpli-
®ed value obtained by Eq. (23) is less than 0.01%.

Fig. 5. In¯uence of the thickness of the core material on the e�ciency ratio.

Fig. 4. In¯uence of the ®n base radius on the e�ciency ratio.
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Hence, the simpli®ed equation can be used with con®-
dence.

4. Conclusion

Computation of the temperature distribution in
annular ®ns made of two materials has been per-

formed. An expression of the e�ciency of ®ns made of
two materials has been developed. A simpli®ed ex-
pression of the main parameter is given and this ap-

proximation is justi®ed for ordinary ®n geometries.
We have shown that, by example, a coating with a

higher thermal conductivity increases the e�ciency of
®ns. The coating is more important for ®ns that have a

low e�ciency when they are uncoated (large height

®ns, thin ®ns). The e�ciency ratio may be increased by
a factor of two.
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